Mechatronics

FRAMEWORK CURRICULUM for the training occupation

(Decision of the Standing Conference of January 30, 1998, Germany)

Mechatronic	Contents of the learning fields
1st year of training	
Learning field 1	Analyze functional relationships in mechatronic systems
	Time reference 40 hours
Formulating objectives	
The students apply regulatio	ns and rules in the investigation of technical equipment. They work with
technical documents and use	e their statements for the solution. You master Method for analyzing and
	tionships and conducting discussions technical realization possibilities in
the team.	
They work with block diagram	ms and use these diagrams to recognize the signal flow, the flow of
material and the energy flow	and the basic mode of action. The possibilities of data processing for
	and the basic mode of action. The possibilities of data processing for all and the basic mode of action. The students are sensitized to problems of
the preparation of work resu	
the preparation of work resu	Its are recognized by them. The students are sensitized to problems of these systems. They are aware of the importance of the English
the preparation of work resu ecology and the economy of	Its are recognized by them. The students are sensitized to problems of these systems. They are aware of the importance of the English
the preparation of work resu ecology and the economy of language for technical comm	Its are recognized by them. The students are sensitized to problems of these systems. They are aware of the importance of the English nunication.
the preparation of work resu ecology and the economy of language for technical comm Contents	Its are recognized by them. The students are sensitized to problems of these systems. They are aware of the importance of the English nunication.
the preparation of work resu ecology and the economy of language for technical comm Contents • Requirement profiles of tec	Its are recognized by them. The students are sensitized to problems of these systems. They are aware of the importance of the English nunication.
the preparation of work result ecology and the economy of language for technical common Contents • Requirement profiles of tech • System parameters	Ilts are recognized by them. The students are sensitized to problems of these systems. They are aware of the importance of the English nunication.
the preparation of work result ecology and the economy of language for technical common Contents • Requirement profiles of tech • System parameters • Block diagrams • Signal, substance and energy	Ilts are recognized by them. The students are sensitized to problems of these systems. They are aware of the importance of the English nunication.
the preparation of work result ecology and the economy of language for technical common Contents • Requirement profiles of tech • System parameters • Block diagrams • Signal, substance and energy	Its are recognized by them. The students are sensitized to problems of these systems. They are aware of the importance of the English nunication.
the preparation of work result ecology and the economy of language for technical common Contents • Requirement profiles of tech • System parameters • Block diagrams • Signal, substance and energy • Meaning of customer-species	Its are recognized by them. The students are sensitized to problems of these systems. They are aware of the importance of the English nunication. hnical systems

1st year of training Learning field 2

Manufacture of mechanical subsystems Time reference 80 hours

Formulating objectives

The students describe the structure, characteristics and fields of application of the applied Materials and supplies. They plan their economic use and pay attention to the environmental and health relevant aspects. They read design drawings and are able to sketch excerpts from them and incorporate changes. You choose the mechanical working methods required for the production and evaluate the outcome of the manufacturing process.

They use typical English technical terms. Occupational health and safety regulations are taken into account in the preparation and execution of work. You can organize the work as a team.

- \cdot Individual and assembly drawings, parts lists
- · Machine elements, fits and tolerances
- · Assembly plans, fasteners

- \cdot Technological basics of manual and mechanical machining and forming
- \cdot Manufacture of mechanical connections by frictional connection, positive connection, material connection
- \cdot Plant-specific materials and auxiliary materials
- \cdot Assembly tools and auxiliary devices
- · Assembly-appropriate storage, safety aspects, occupational safety
- · Testing and measuring equipment, measuring errors
- · Ecological and economic aspects

1st year of training Learning field 3

Install electrical equipment under consideration safety aspects Time reference 100 hours

Formulating objectives

The students have in-depth knowledge of the effect of electrical energy in manageable technical processes. They know basic circuits of electrical engineering, they represent these and examine their mode of action. They apply their knowledge for the selection of electrical equipment. They perform calculations and use tables and formulas to solve the tasks.

You know the dangers that result from the use of electrical energy for people and technology, They master the measures for the protection of humans and technical plants and apply the regulations. The required test and measuring devices are selected and used by them.

You are working on changes to the working documents. They also take information from English work documents.

Contents

- \cdot Electrical quantities, their relationships, display options and calculations
- · Components in DC and AC circuits
- · Electrical measuring methods
- \cdot Selection of cables and wires for energy and information transmission
- · Electrical networks

 \cdot Dangers due to overload, short circuit and overvoltage, as well as the calculation of the required protection elements

- · Handling of tables and formulas
- · Electricity effect on the organism, safety rules, accident relief measures
- \cdot Measures against dangerous body currents according to current regulations
- \cdot Check electrical equipment
- \cdot Causes of overvoltages and interference voltages, their effects, countermeasures
- · Electromagnetic compatibility

Examine the energy and information flows in electrical, pneumatic and hydraulic assemblies Time reference 60 hours

Formulating objectives

The students master basic control technology. You read schematics, make sketches and make changes. The technical parameters for the operation of electrical, pneumatic and hydraulic assemblies are known. They know methods for generating the required auxiliary energy. They apply basic measuring methods safe and aware of the dangers of handling electrical, pneumatic and hydraulic aware of systems.

You understand English product descriptions and use the English terms. They observe regulations of occupational safety and environmental protection.

Content

- · Pneumatic and hydraulic variables, their relationships, display options and calculations
- · Supply units for electrical engineering, pneumatics and hydraulics
- · Basic circuits of the control technology
- · Technical documents
- · Signals and measured values in control systems
- · Danger when handling electrical, pneumatic and hydraulic power modules
- \cdot Economic Aspects, Occupational Safety and Environmental Protection, Recycling

1st year of training Learning field 5 Communicate by means of data processing systems Time reference 40 hours

Formulating objectives

The students describe the use of data processing systems and their classification in operational processes as well as the structures of networked systems and the resulting security requirements. They analyze work orders, obtain operational information and can do this by means of prepare and document industry-standard software. You can get help with solutions from English manuals.

- · Operating systems
- · Networked by data processing
- \cdot Data protection and data safety
- · Preparation of information using industry software
- \cdot Control of operational processes with the help of data processing
- \cdot Ergonomic aspects of computer workstations

Planning and Organizing Workflows Time reference 40 hours

Formulating objectives

The students describe the organizational structures and organize the organization Teamwork according to functional, manufacturing and economic criteria. You know the requirements for making the operational readiness of all necessary for the work process technical means and apply quality control procedures. The possibilities of data processing systems to plan the process and to document all necessary control and organizational steps are being used. You pay attention to the aspects of health and safety at work preparation. English terms are used.

Content

- \cdot Material disposition and costing
- · Analysis of work processes
- \cdot Rating u. Documentation of results
- \cdot Ergonomics and preventive accident protection
- \cdot Simple time and cost calculation
- \cdot Presentation procedure of work processes

2nd year of training

Learning field 7

Realization of mechatronic subsystems Time reference 100 hours

Formulating objectives

The students describe the structures of mechatronic subsystems. They explain that effect of sensors and transducers and adjust sensors. You know ways to realize linear and rotational movements by means of electrical, pneumatic and hydraulic components and apply knowledge about controls and regulations on to influence the direction of travel and movement. By means of signal investigations, they check the function of components and eliminate errors. They design basic circuits and describe their mode of operation in English. Simple programming methods are mastered.

- · Timing chain and control loop, block diagrams
- · Characteristics of controls and regulations
- · Effect of sensors and transducers
- \cdot Signal behavior of sensors and transducers
- \cdot Programming simple motion sequences and control functions
- \cdot Design of circuits
- \cdot Graphic representations of control and regulation processes
- · Measuring signals
- \cdot Basic circuits and mode of operation of drives
- · Representation of drive units in function diagrams

Formulating objectives

The students describe the structure and the signal course of one of several components existing mechatronic system. They analyze the influence of changing operating conditions on the process flow. They detect errors due to signal examinations at interfaces and eliminate the causes of errors. They use methods for metrological detection of control and regulation processes, prepare the Record

and document results. They apply knowledge of the control technology to speed or speed of to influence movements.

They are capable of connecting drive units, select coupling variants between drive units and work machines and use them purposefully. You are aware of the causes and effects of congestion situations. They determine the technical parameters of required protective devices and select them. Circuit changes are incorporated into the technical documentation.

Dangers are known to them. Occupational health and safety regulations are taken by them respected. You can control and control-related relationships and the operation of selected Describe drive units in English. Programming methods are mastered.

- \cdot Operating characteristics and characteristic curves of drives
- · Limit values
- · Functioning, selection and adjustment of protective devices
- · Control and regulation of drives
- · Positioning processes, degrees of freedom
- \cdot Testing and measuring method for position determination
- · Gearboxes, couplings
- · Incorporation of changes into existing documents
- \cdot Programming of motion sequences and control functions
- \cdot Computer simulation
- \cdot Measured value acquisition at interfaces

Formulating objectives

The pupils can read schematics and, by means of them, the information structure in systems describe. They make connections between electrical, mechanical, pneumatic and hydraulic components They are proficient in the metrological techniques for the investigation of information flows and are able to analyze signals and draw conclusions about possible sources of error. diagnostic procedures using the data processing are used by them.

You are working on changes to existing documents. They also modify documents in English.

Contents

- · Signal curves in systems
- Signal structures
- · Bus systems
- \cdot Testing and measuring procedures
- \cdot Examination of interfaces between system components
- · Networking between subsystems
- · Hierarchies in networked systems
- · Documentation of measurement results

3rd year of training

Learning field 10

Planning assembly and disassembly Time reference 40 hours

Formulating objectives

The students master the planning and preparation of assembly and disassembly of mechatronic systems. They explain the process of the work processes and can judge work results. They include aspects of health and safety at work in the preparatory phase on.

They check installation conditions at the site and take them into account. They plan to use the necessary aids. They organize the work in a team. They communicate in English about assembly instructions.

- \cdot Operational assembly documents
- \cdot Conditions for working at the installation site, taking into account the regulations
- \cdot Supply and disposal facilities of mechatronic systems
- · Means of transport, hoists and assembly aids
- · Safety measures and their testing
- \cdot Inspections during assembly
- \cdot Tolerances of shape and position
- · Adjustments
- · Disposal and recycling during disassembly

3rd year of training Learning field 11

Formulating objectives

The students represent the overall function and sub-functions of a system including of its protective equipment. For this purpose, they take information from technical documentation. They explain the influence of components on the overall system and check with the help of interface investigations their function. The required measuring methods are controlled by them and purposefully applied. The students explain the procedures for commissioning mechatronic systems and specify the procedure for commissioning an entire system. They use the possibilities of diagnostic systems and interpret function and error logs.

The effectiveness of protective measures is checked by them. They adjust sensors and actuators, check system parameters and set them. Results are in documents documented. They systematically limit errors and eliminate faults. You can communicate in English.

- \cdot Block diagrams, effect and function diagrams of mechatronic systems
- \cdot Check and adjustment of sensors and actuators
- · System parameters
- · BUS parameterization
- \cdot Software installation
- \cdot Troubleshooting procedures in electrical, pneumatic and hydraulic systems
- · Fault analysis
- \cdot Troubleshooting strategy, typical error causes
- · Electrical and mechanical protective measures, protective regulations
- · Electromagnetic compatibility
- · Process visualization, diagnostic systems, remote diagnostics
- \cdot Commissioning protocol, error documentation, repair protocol
- · Quality assurance procedures
- Bug fixes
- · Consideration of customer requirements
- · Influences of mechatronic systems on economic, ecological and social conditions

Preventive maintenance Time reference 80 hours

Formulating objectives

The students describe influences on the operational safety of technical systems and the need for preventive maintenance. They use maintenance schedules and apply detection procedures maintenance requirements. You can check, adjust and adjust safety devices. Health and safety regulations are taken into consideration. You create error analyzes and statistically prepare the results. Results of maintenance work are incorporated into the documentation. The results are also prepared in English.

Contents

- · Pollution, fatigue, consumption, wear and their effects
- · System reliability
- \cdot Creation and adjustment of maintenance plans
- · Inspections
- · Procedure for checking safety devices
- · Adaptation of system components to changing requirements
- · Diagnostic procedures and maintenance systems
- \cdot Quality management
- $\cdot \ \mathsf{Documentation}$
- · Incorporation of changes in technical documentation

4th year of training Learning field 13

Transfer of mechatronic systems to customers Time reference 60 hours

Formulating objectives

The students prepare information about mechatronic systems textually and graphically and present them. They plan to instruct operating and operating personnel in the system and carry them out. They exchange information in English. They take into account the principles of customer relations design and the marketing strategies of their clients operation.

- · Use of internal communication systems
- Teamwork
- Communication
- · Moderation, presentation
- \cdot Customer / supplier relationship
- · Operating instructions, operating instructions